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Introduction
= Understanding proteins
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= A growing amount of data; mostly unannotated sequences
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l. Inferring interaction partners from

protein sequences
with Ned S. Wingreen, Lucy J. Colwell, Rob S. Dwyer

Il. A physical interpretation of sectors

of collectively correlated amino acids
with Ned S. Wingreen & Shou-Wen Wang



Introduction

= Co-evolution and correlations between interacting partners
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Often, several paralogs in each species
NGLPL

— Can we use these patterns of correlations DGLPA

to infer specific interaction partners?

(1) Do protein families A and B interact or not?
(2) Within a species, which A interacts with which B?
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DCA-based method

= [terative pairing algorithm (IPA)
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Approximately minimizes effective interaction energies between partners



DCA-based method

= Correlations, direct couplings and interaction energies

C fi(a) ic{l,.,L}
DGLPA
-DGIEA — fij(aaﬁ) Q€ {Alg--,Azo,Agl = —}
: : Cij (o, B) = fij(a, B) — fila) f(B)

Pairwise maximum entropy model:

Plai,...,ar) = exp{ [Zh (o) ‘|‘Z€'LJ az,ag)]}

1<
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efij(Oi, B) much better predictor of 3D contact than Oij (a, 5)
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Interaction energies for all possible A-B (HK-RR) pairs in each species:
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DCA-based method

= [terative pairing algorithm (IPA)
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Performance on real data

= Prediction of interacting pairs among HK and RR proteins

Dataset: 5064 pairs, mean 11.0 /species; Meff=2091 (from full dataset with 23,424 pairs)
Nincrement=6; different Nstart (number of training HK-RR pairs)
Results averaged over 50 replicates, with different random choices of training pairs
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A mutual information (Ml) based IPA

= Ml based iterative pairing algorithm (MI-IPA)

A (HK) B (RR) Training set of HK-RR pairs
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Approximately maximizes pairwise mutual information between partners



TP fraction

MI-IPA vs. DCA-IPA

= Prediction of interacting pairs among HK and RR proteins

Dataset of 5064 pairs, mean 11.0 /species
Nincrement=6; different Nstart (number of
training HK-RR pairs)
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* Good performance even without a training set
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* MI does as well and sometimes better than DCA (vs. contact prediction)

* Potential signatures of the existence of an interaction between 2 protein families
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Introduction

= Sectors: Halabi, Rivoire, Leibler & Ranganathan, 2009 (S1A serine protease)
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e Sectors are obtained
from the top modes
of the weighted
covariance matrix



Introduction

= Sectors: Halabi, Rivoire, Leibler & Ranganathan, 2009 (S1A serine protease)

Sectors are connected in 3D

Each is associated to different characteristics
(mutagenesis + analysis of sequence
divergence in each sector):
 primary catalytic specificity

(substrate recognition) — function
e organism type — phylogeny
» whether they are catalytic or not — function

— What is the physical origin of sectors?
— Can we identify sectors from sequence data in a principled way?



A physical model for sectors

= Additive traits and sector definition

L
= « = : amino-acid sequence
@ Z e * Ai(az): mutational effect on 7' of a mutation to a at site /

- De Pristo et al., 2005 . . " .
Thermal stability \yiic & shakhnovich, 2011 ; Nonlinear selection on additive traits otwinowski et al., 2018

=1

Sector: set of sites with dominant mutational effects on a trait under selection

= A “toy model” additive trait based on a concrete physical example

. . L . ] Bahar et al., 2010
» Coarse-grained elastic-networks — good description of many protein properties zhengetal., 2010
Yan et al., 2017

* Elastic-network model with sequence dependence (PDZ domain):
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A physical model for sectors

= Signature of a physical sector

L
« Selectionon 0F = E — E© = Z SIA,
=1

L 2
Fithess W(g) = —g (Z AS; — 5E*)

=1

+ Boltzmann distribution a
- S
— Gaussian selection window P(S) = exp )l
(selective weighting) >_gexp(w(9))

0.02

Probability
o
o

0

» Eigendecomposition of the covariance matrix of selected sequences (PCA)
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— A is a direction of particularly low variance (repulsive pattern in a

generalized Hopfield model + field) Cocco et al,, 2011 & 2013



Detecting sectors from sequence data

= Other small-variance directions can exist
Conservation — other small-variance directions (example: sites with (S;), ~ 1)
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= Introducing a more robust method: ICOD

Inverse covariance matrix — mean-field approximation of couplings (cf. DCA)
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Conclusion

= Summary

» Sequence covariation — structure & protein-protein interactions & functional sectors
» Methods to predict PPI from sequences
» Selection on any relevant physical property of a protein — sector

= Perspectives

* PPI: roles of correlations due to phylogeny and to interactions - with Martin Weigt
 Predicting new PPI; improving complex structure prediction
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= Other projects: evolution at the population scale
In particular: evolution of antimicrobial resistance

— Loic Marrec (earlier today) ‘?ﬂ‘ LABORATOIRE .
— Claude Loverdo (tomorrow afternoon) VAJean Perrin
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