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Motivations

x0 = 0 , xn = xn−1 + ηn , n ≥ 1

Gibbs measure of an elastic 
interface (« solid on solid » model)

 In this context, the number of minima is important, e.g. to 
characterize the roughness of the interface

results only for the average number of minima, but nothing 
on the fluctuations !
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Electron. J. Probab. (2007)
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Motivations

 Exact results for finite number of steps  + central limit theorem 
in the limit 

N
N → ∞

This talk: what about more general constrained random 
walks with continuous jump/increment distribution ?  

�(�N) = N/4 + O(1) , Var(�	) = N/16 + O(1)

Electron. J. Probab. (2007)
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local  minima (N−step first−passage walk

free RW RW meander

RW up to the 1st-
passage at the origin

A. Kundu, S. N. Majumdar, G. S. 
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 Sparre Andersen theorem (1954) for the « survival » probability

qN = Prob . (x1 ≥ 0, x2 ≥ 0,⋯, xN ≥ 0) = 1
22N (

2N
N )

Universal, i.e., independent of the increment/jump 
distribution ϕ(η)
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2 Q+(m − 1,N − 1) + 1

2 Q−(m, N − 1)

Q+(m,2) = δm,0/2 , Q−(m,2) = (δm,0 + δm,1)/4starting from

 For the free random walk, these recursion relations can be easily solved 
via generating function techniques

 Unfortunately, they are much harder to solve for constrained random 
walks, like meanders (except for some special jump distributions, e.g., 

)ϕ(η) = e−|η|/2

another method is needed !



A second approach via an auxiliary random walk

 The RW built from the local minima

xn

0

local  minima

N
n

(N−step free walk)

y
1

y
2 y

3

y
4 y

5



A second approach via an auxiliary random walk

 The RW built from the local minima

xn

0

local  minima

N
n

(N−step free walk)

y
1

y
2 y

3

y
4 y

5

Note that the number of steps of this effective RW is not 
fixed



A second approach via an auxiliary random walk

 The RW built from the local minima

xn

0

local  minima

N
n

(N−step free walk)

y
1

y
2 y

3

y
4 y

5

Note that the number of steps of this effective RW is not 
fixed

The effective jump distribution  is symmetric and 
continuous

ψ(y′ − y)
A. Kundu, S. N. Majumdar, G. S. ‘2024 
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Qfp
> (m) = qm × 1

2
qm = Prob . (x1 ≥ 0, x2 ≥ 0,⋯, xm ≥ 0) = 1

22m (
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m )

Qfp(m) = Qfp
> (m + 1) − Qfp

> (m) = 1
22m+2

(2m)!
m!(m + 1)!

A. Kundu, S. N. Majumdar, G. S.  ‘2024
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Conclusion and some open questions

 Universal results for the statistics of the number of minima for 
constrained RWs  

 Our results for the meanders can be seen as an extension of the 
Sparre Andersen theorem

 Can it be extended to other processes ?  

 Are there some natural extensions of these questions in higher 
dimensions? see, e.g., extensions of the Sparre Andersen theorem in higher 

dimensions by Z. Kabluchko, V. Vysostsky, D. Zaporozhets



Thank You ! 


