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Modeling spreading processes

Propagation of infectious diseases: standard simplified epidemic modelling
* Disease evolution: discrete states of the host S, I, R, etc...
* Contagion events: result from single exposures (“simple contagion”)
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Modeling spreading processes

Propagation models
Simple contagion: Epidemic-like, single exposure (Sl, SIS, SIR,...)

Structure of interactions
From extremely simplified (mean-field) to extremely detailed (ABMS)
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Homogeneous Social structure ~ Contact netwurk/’/ Multi-scale Agent Based
mixing . models // models models

Individuals=nodes of a network
Interactions=along edges of the network



Simple contagion on networks

Heterogeneous structure

=> Epidemic threshold going to 0

=> relevance of hubs and cores

=> cascading dynamics from hubs to low degree nodes
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However (I):
simple contagion
IS not enough



Complex contagion

Multiple sources needed for a transmission event

*a contagion is complex if its transmission requires an individual to have contact with two or
more sources of activation”, i.e. if a “contact with a single active neighbor is not enough to

trigger adoption”
(Centola & Macy, Am. J. Socio. 2007)
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Evidence of complex contagion of information in social
media: An experiment using Twitter bots

Bjarke Mensted B, Piotr Sapiezyriski B, Emilio Ferrara B, Sune Lehmann B3

Published: September 22, 2017 « https://doi.org/10.1371/journal.pone.0184148

“We provide experimental evidence that the complex
contagion model describes the observed information
diffusion behavior more accurately than simple
contagion.”

REPORT

The Spread of Behavior in an Online Social
Network Experiment

Damon Centola
+ See all authors and affiliations

Science 03 Sep 2010:

Vol. 329, Issue 5996, pp. 1194-1197
DOI: 10.1126/science. 1185231

“Individual adoption was much more likely when
participants received social reinforcement from multiple
neighbors in the social network.”

Structural diversity in social contagion

Johan Ugander, Lars Backstrom, Cameron Marlow, and Jon Kleinberg
PNAS April 17, 2012 109 (16) 5962-5966; https://doi.org/10.1073/pnas.1116502109

Edited by Ronald L. Graham, University of California at San Diego, La Jolla, CA, and approved February 21, 2012

“We find that the probability of contagion is tightly
controlled by the number of connected components in
an individual's contact neighborhood, rather than by the
actual size of the neighborhood.”




Complex contagion

A simple model of global cascades on

random networks A particularly simple binary decision rule with externalities that captures the essential
features outlined above is the following: An individual agent observes the current states
Duncan J. Watts (either 0 or 1) of k other agents, which we call its neighbors, and adopts state 1 if at

PNAS April 30, 2002 99 (9) 5766-5771; https://doi.org/10.1073/pnas.0820904] least a threshold fraction ¢ of its k neighbors are in state 1, else it adopts state 0.

week endin,

PRL 115, 218702 (2015) PHYSICAL REVIEW LETTERS 20 NOVEMBER 2015

different kinetics behind them (Fig. 1). Motivated byl
Kinetics of Social Contagion empirical observations [24], we extend Watts’ threshold
model by considering blocked nodes immune to social

2.4.* . . . .
influence and discuss their effect on cascade formation. In

Zhongyuan Ruan,]’2 Gerardo Iﬁjgucz,3’4 Marton Kar‘sai,5 and J4nos Kertész"

Parameter: fraction of
neighbours I needed to

change state S — 1




However (I1):
the network representation
IS hot enough



Social structure: Network representation:
group interactions limited to pairwise interactions




Networks are not enough
[

Example: co-authorship

Three binary interactions / three papers One group interaction / one paper



Going beyond networks:
Hypergraphs, simplicial complexes

d-dimensional Social structure:
group interactions simplicial complex

0-simplex O ‘v
1-simplex @—@

-x N
SUA,

cligue simplex




Mixing simple and complex contagion:
epidemic-like models on simplicial complexes

“Simplagion”

AN

ARTICLE

Simplicial models of social contagion

lacopo lacopini® "%, Giovanni Petri®4, Alain Barrat® >~ & Vito Latora® "2®/

Nat Commun 10, 2485 (2019)



Simplicial contagion model

Social structure: (static) simplicial complex, dimension D
SIS - like

b " Q) nrected
’ \ @ susceptible
X

Ba proba per unit time that a S node in a simplex of dimension d becomes | if
all the other nodes in the simplex are |

Contagion parameters: . fa

1-simplices (links) 2-simplices (triangles)
Simple contagion events group effect (synergy)
Complex contagion events



Small fa: continuous SIS-like transition
Large fa:
* Transition becorr_]e_s_ dlscont_lr_mous Nat Commun 10, 2485 (2019)
- Dependency on initial conditions

ARTICLE
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Simplicial models of social contagion
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Non-linear higher order contagion model

communications physics

Explore content v  About the journal v  Publish with us v

nature > communications physics > articles > article

Article | Open access | Published: 17 January 2022

Influential groups for seeding and sustaining nonlinear
contagion in heterogeneous hypergraphs

Guillaume St-Onge &, lacopo lacopini, Vito Latora, Alain Barrat, Giovanni Petri, Antoine Allard & Laurent

Hébert-Dufresne &

Communications Physics 5, Article number: 25 (2022) | Cite this article

7073 Accesses | 42 Citations | 21 Altmetric | Metrics
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Simple contagion
Cascading complex contagion
Higher-order complex contagion

Propagation patterns ?




More specifically

* Are the propagation patterns similar or different for different
models and types of contagion processes (on a given
network)? (Similarity is often implicitly assumed in theoretical works)

*From an observed propagation, can we deduce the type of
contagion process (simple, cascade, higher-order)?



* Are the propagation patterns similar or different for different
models and types of contagion processes (on a given
network)?

*From an observed propagation, can we deduce the type of
contagion process (simple, cascade, higher-order)?
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RESEARCH ARTICLE

Infection patterns in simple and complex contagion

processes on netwo rks
Th res h O |d Diego Andrés Contreras B, Giulia Cencelti [ [B], Alain Barrat

| Version 2 ~ | Published: June 10, 2024 + httpsy/doi.org/10.1371/journal.pcbi. 1012206

Infection patterns = C;: probability that node | infects node j in a run
non-symmetric
correlated with weights of connections

132 Network Science 2 (1): 132-137, 2014. (€ Cambridge University Press 2014. The online version
of this article is published within an Open Access environment subject to the conditions of the

Creative Commons Attribution licence http:/ /creativecommons.org/licenses,/by /3.0/

doi: 101017 /nws.2014.5
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The infection tree of global epidemics

lesearch article | Open access | Published: 21 Novembes 2007
Predictability and epidemic pathways in global

outbreaks of infectious diseases: the SARS case study Vil PASTERE ¥ RGN MARCE S SRR ETRA ik

Vittoria Colizza ™, Alain Barrat, Marc Barthélemy & Alessandro Vespignani COSTA GOMES. NICOLE SAMAY, NICOLA PERRA and
BMC Medicine 5, Article number: 34 (2007) | Cite this article A I E S S A N D R O V E S P 1 G N A N1
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RESEARCH ARTICLE

Infection patterns in simple and complex contagion
processes on networks
Th reSh O |d Diego Andrés Contreras B, Giulia Cencetti B &, Alzin Barrat

| Version 2 ~ | Published: June 10, 2024 + httpsy/doi.org/10.1371/journal.pcbi. 1012206

Infection patterns = C;: probability that node | infects node j in a run

non-symmetric
correlated with weights of connections

Usual question: for a given spreading process (often: Sl, SIR) how do the
Infection patterns depend on a network’s properties?

132 Network Science 2 (1): 132-137, 2014.  © Cambridge University Press 2014. The online version
of this article is published within an Open Access environment subject to the con 5

Creative Commons Attribution licence hitp:/ /creativecommaons.org /licenses/by /3.0/

doi: 101017 /nws.2014.5
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Vittoria Calizza &, Alain Barrat, Marc Barthélemy & Alessandro Vespignani COSTA GOMES. NICOLE SAMAY, NICOLA PERRA and

BMC Medicine S, Article number: 34 (2007) | Cite this article ALESSANDRO VESPIGNANI
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Infection patterns in simple and complex contagion
processes on networks

Th res h O |d Diego Andrés Contreras B, Giulia Cencetti B &, Alzin Barrat

| Version 2 ~ | Published: June 10, 2024 + httpsy/doi.org/10.1371/journal.pcbi. 1012206

Infection patterns = C;: probability that node | infects node j in a run
non-symmetric
correlated with weights of connections

Usual question: for a given spreading process (often: Sl, SIR) how do the
Infection patterns depend on a network’s properties?

Here: For a given network, how do the infection patterns depend on

the parameters of a spreading model?

the detalils of the simple contagion model?

the nature of the contaglon model (S|mple/S|mpI|C|aI/threshoId)
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Propagation patterns

- different compartments
- Markovian vs non-Markovian dynamics
- different timescales

Similarity (@) . B .,
- L85 Very high similarity for different models
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i S2.31 . . . .
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Ra Ro Ro on other data sets)
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Attack rate

IS

0.0 -

Ry=15
t=1.8

0.25 1

0.00 -

Simulation with a reference Ro=4, run
until t » Cj(t) (here: SIR model)

For t such that
attack rate(Ro=4,t) = final attack rate(Ry’),

Cii(t) very close to Cj(Ro’)

— one set of simulations at large Ry yields
propagation patterns for lower values of Ro



Propagation patterns

Similarity between infection patterns of/complex contagion models
with different parameters

0.6<a<0.7
(@) (0,07, 7)- () (0.07,7)-
(0.1, 7) - [9:98 (0.1, 7)- -0.98 NB: in triadic contagion events
R (0.1,5)1 ~ (0.1, 5)- (j,k)= 1, both C; and Cy
5 (02,788 0.96 a (0.2,7)1 0.96 incremented by 1/2
& (0.15, 5) - -
(0.2, 5)
(0.2, 3) — 0.94
(0.2, 1) -
(b) (d) - (B.Ba) Binary contagion
events
100 .G
100
" ¥ 20 T\N—‘*,w\ Triadic contagion
. events
-0.98
o * Similarity remains high
oo * Dependence on the ratio between contagion
0.92 :
o events of 2 types (even at fixed attack rate)
. * Large similarity with simple: due to
High similarity correlations between weights of links and of
| between simple triangles in empirical data
and simplicial
contagion
infection patterns




Propagation patterns

Similarity between infection patterns of(thresholdcontagion\modelsc/ \7

with different parameters

(a)
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(b)

0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

Threshold

>

A

Need to generalize infection patterns definition:
| contaminated from combined influence of j=i,liz,...,ik
— each Cj incremented by the relative contribution of j

-0.78

0.76

0.74

0.2

0.70

Similarity
between simple
and threshold
contagion
infection patterns

* Similarities take lower values: stronger parameter dependence
* Larger 6 -» more similar to simple contagion
* Still rather large values (all infection patterns correlated with link weights)




Propagation patterns

Threshold
PLOS ¢

Infection patterns in simple and complex contagion
processes on networks
Diego Andrés Contreras B, Giulia Cencelti BJ B, Alzin Barrat

\ersion 2 v | Published: June 10, 2024 + hitpsy/doi.org/10.1371/journal.pcbi. 1012206

In summary

* Very strong robustness of infection patterns in simple contagion models with
different dynamics and parameters

* If one defines spreader/receiver indices, very strong robustness of ranking of
nodes across models and parameters

. .
* Possibility to use simplistic models to gain insight into propagation patterns of
more complex processes, even if parameters unknown

* Possibility to use purely topological measures to predict ranking of nodes w.r.t.
spreading power or sentinel role for arbitrary diseases




Propagation patterns

Threshold

& CPEMACCESS P PEER-REVIEWED

RESEARCH ARTICLE

Infection patterns in simple and complex contagion
processes on networks
Diego Andrés Contreras B, Giulia Cencelti BJ B, Alzin Barrat

| Version 2 ~ | Published: June 10, 2024 + https/doi.org/10.1371/journal.pcbi. 1012206

In summary

Patterns less robust for complex contagion processes
Depend on ratio between simple vs complex contagion events
More sensitive to threshold value in threshold processes

Similarities remain rather high in all cases

i\/ Y /
Information on (social) complex contagion patterns and ranking of influential nodes can
still be obtained from simple contagion schematic models

Can we exploit the remaining differences between patterns to identify the mechanism of
an observed propagation process?




* Are the propagation patterns similar or different for different
models and types of contagion processes (on a given
network)?

*From an observed propagation, can we deduce the type of
contagion process (simple, cascade, higher-order)?



Distinguishing processes

PHYSICAL REVIEW LETTERS 130, 247401 (2023)

Distinguishing Simple and Complex Contagion Processes on Networks

s o e 5 2 2 i 2
Giulia Cencetti®, Diego Andrés Contreras®,” Marco Mancastroppa®,” and Alain Barrat
1 . 2 3

Can we exploit the remaining differences between propagation patterns to
Identify the mechanism of an observed propagation process?

* Previous results: averaged over realizations of a process
* What about a single observed realization of a process?

“Observed’: order of contagion of nodes + known (hyper)network structure
(no information on contagion events, uses only local info)

By observing a single spread, can we identify from which of these 4
processes it was obtained?

(d)  Nonlinear hypergraph




Distinguishing processes

(c) ~ Simplicial (d)  Nonlinear hypergraph

order order

Simple + simplicial + non-lin higher order models: cascading process from
hubs to low degree nodes (Barthélemy et al., PRL 2004)
- negative correlation between order of contamination o and degree k

Threshold model: no correlation



Using C; = corr(o,k) to classify threshold model vs simple/simplicial/Non-linear HO
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here SocioPatterns data set on
contacts in a workplace



Using C; = corr(o,k) to classify threshold model vs simple/simplicial/Non-linear HO

[l
2 N g
>0 Py g i B Simple model
+ g *-l- - Threshold model
2.5 :l. Wy %1 | Simplicial model
o
e % + NLH model
e
0.0 1 ¥ n .*"""'" | |
—-0.50 -0.25 0.00 Simulations on empirical networks,
cnrr{ﬂ k) here SocioPatterns data set on

contacts in a workplace

Procedure: observe run, compute C;

If C1 > c: predict run to be from threshold model
(if the prediction is correct: true positive TP; else false positive FP)

If C1 < c: predict run to be from another model
(if the prediction is correct: true negative TN; else false negative FN)



Using C; = corr(o,k) to classify threshold model vs simple/simplicial/Non-linear HO

[l
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* *-l-. - ¢ Threshold model
2.5 :l. Wy %1 | Simplicial model
o
e % + NLH model
e
0.0 { #lm®n® I*‘m: | '
—-0.50 -0.25 0.00 Simulations on empirical networks,
corr(o,k) here SocioPatterns data set on

contacts in a workplace
Procedure: observe run, compute C;

If C1 > c: predict run to be from threshold model
(if the prediction is correct: true positive TP; else false positive FP)
If C1 < c: predict run to be from another model
(if the prediction is correct: true negative TN; else false negative FN)

To evaluate performance, build ROC curve parametrized by c:
true positive ratio vs false positive ratio TPR=TP/(TP+FN), FPR=FP/(FP+TN)
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Distinguishing processes

(b) Thr (c) Simplicial (d)  Nonlinear hypergraph
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order order

Simplicial + non-lin higher order: nodes belonging to many hyperedges are
reached first
- negative correlation between order of contamination and ratio k,/k

Simple + threshold: no correlation



Using C, = corr(o,ks/k) to classify simplicial or NLH model vs simple/threshold

Procedure: observe run, compute C;
If C; > c: predict run to be from simple or threshold model
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(if the prediction is correct: true positive TP; else false positive FP)

If C, < c: predict run to be from simplicial or non-linear higher order model

(if the prediction is correct: true negative TN; else false negative FN)
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Building a classifier for the four types of processes

C, = corr(o,k) Procedure:

C, = corr(o,ku/k) perform many runs of each process,
Cs = corr(o,k,) measure correlations,

Cs = corr(o,k)) train a classifier (here: random forest),

evaluate on test runs not used in the training



Building a classifier for the four types of processes

C, = corr(o,k) Procedure:
C, = corr(o,ka/k) perform many runs of each process,
Cs = corr(o,k,) measure correlations,
Cs = corr(o,k;) train a classifier (here: random .forest), o
evaluate on test runs not used in the training
Performance:

confusion matrix: gives the number of times a run of a model x is classified as from model y

(diagonal matrix=perfect performance)

(a) Predicted classes
5 C-T C-5 C-NL

-l

C-T

C-S ..
C*NL .. | 50

200

150

100

Actual classes

Predicted classes
S C-T C-HO

|
o
100

Actual classes

C-HO

Simulations on empirical networks
(here SocioPatterns data, contacts in a workplace)



What if network unknown?

Train classifier with simulations performed on several known networks,
test with simulations on the “unknown” network

m.

Train: Conf.,

B Hospital, H. School

. -
400 campus, El. school

France, Pr. School
France, University

Actual classes
C-T
Counts

C-HO

s00 Utah, MidSchool
Utah, Email.

S Y C-HO Test: Workplace.
Predicted classes

Limitation: strong dependence on individual network properties,
hence performance remains limited in many cases

Test H. School | Pr. School | University | El. School | MidSchool

Workplocs | Sens Hospital France France campus Utah Utah Email

dataset

Accuracy 0.81 0.80 0.63 0.63 0.52 0.56 0.63 0.70 0.51



What if network unknown?

Train classifier with simulations performed on surrogate (hyper)networks,
which preserve (enough?) statistics of the real one
(distributions of total degree, of ki, group structure...)

' Train: 10 surrogate nets, test: Workplace

Predicted classes
5 C-T C-5 C-NL

1000
5 .

0 800
3
g CT . 600 £
E 5
_'I'G 2
g

200

Limitation:
best performing surrogate depends on network’s properties (modularity),
Need better algorithms to build surrogate hypernetworks



(b) (d) Nonlinear hypergraph

PHYSICAL REVIEW LETTERS 130, 247401 (2023)

Distinguishing Simple and Complex Contagion Processes on Networks

. P T ; 2 2 : 2
Giulia Cencetti®, Diego Andrés Contreras®,” Marco Mancastroppa®,” and Alain Barrat
1 ’ 5 E

In summary, it is possible to build a classifier that

* Uses only local information

* Does not use information on node’s neighbours status

* Does not use information on which edges/hyperedges supported contagion
events

* When applied on single instances of an observed process, can distinguish
between a spread driven by simple contagion, a threshold process
or a process with higher-order mechanisms

* Can be trained using processes simulated on surrogate hypernetworks




*What are the most important structures for the propagation?

nature communications

Explore content v About the journal v Publish with us v

Article | Open access | Published: 06 October 2023

Hyper-cores promote localization and efficient seeding
in higher-order processes

Marco Mancastroppa, lacopo lacopini, Giovanni Petri & Alain Barrat &

Nature Communications 14, Article number: 6223 (2023) | Cite this article

* Are the propagation patterns similar or different for different
types of contagion processes? pLos coMPUTATIONA

@ oFenaccess P PEER-REVIEWED

Infection patterns in simple and complex contagion
processes on networks
Diego Andrés Contreras B, Giulia Cencelli BJ B, Alzin Barrat

| Version 2 v | Published: June 10, 2024 « https:/doi.org/10.1371/journal.pcbi. 1012206

*From an observed propagation, can we deduce the type of
contagion process (simple, cascade, higher-order)?

PHYSICAL REVIEW LETTERS 130, 247401 (2023)

Distinguishing Simple and Complex Contagion Processes on Networks

it P ; 2 2 : 2
Giulia Cencetti®, Diego Andrés Contreras®,” Marco Mancastroppa®,” and Alain Barrat
1 . 5 =
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